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Transient free convection with mass transfer MHDmicropolar fluid
in a porous plate by the network method
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SUMMARY

The transient problem of coupled heat and mass transfer of a micropolar fluid in magneto-hydrodynamic
free convection from a vertical infinite porous plate with an exponentially decaying heat generating
considering the viscous dissipation and ohmic heating effects is studied. Joule heating must be considered
when the viscous dissipation and the Prandtl number are large. The non-dimensional equations for the
conservation of mass, momentum, energy and concentration are solved by means a numerical technique
based on electric analogy (network simulation method). This method provides the numerical response
of the system by running the network in circuit resolution software with the solution to both transient
and steady-state problems at the same time, and its programming does not require manipulation of the
sophisticated mathematical software that is inherent in other numerical methods. The effects of the material
parameters, viscous dissipation, internal generation and Joule heating on velocity, angular momentum and
temperature fields across the boundary layer are investigated. In addition, the skin-friction coefficient,
couple stress coefficient, Nusselt number and Sherwood number are shown in tabular form. The numerical
results for velocity and temperature distributions of micropolar fluids are compared with the corresponding
flow problems for a Newtonian fluid. Copyright q 2007 John Wiley & Sons, Ltd.
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INTRODUCTION

In many practical applications, for example, magneto-hydrodynamic (MHD) generators, extrusion
of polymer fluids, plasma studies, nuclear reactors, oil exploration and geothermal energy extrac-
tion, it is very important to study the flow and heat transfer for an electrically conducting polar
fluid past a porous plate under the influence of a transverse magnetic field. Another application is
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in industrial manufacturing processes, where it may be necessary to consider internal heat gener-
ation to consolidate production, as well applications in fire and combustion modelling. In these
processes, the heat transfer rates can be controlled by means of a magnetic field, and knowledge
of the unsteady and stationary heat transfer is important. The combination of the effects of internal
heat generation, Joule heating and viscous dissipation in the MHD process with micropolar fluids
is studied here. It was shown by Gebhart [1] that the viscous dissipation effect plays an impor-
tant role in free convection in various devices that are subjected to large deceleration, or which
operate at high rotative speeds and also in strong gravitational field processes on large scales and
geological process. The heat due to viscous dissipation in the energy equation is very small and
is neglected. However, when the gravitational force is intensive or when the Prandtl number of
the fluid is very high, the viscous dissipative effects cannot be neglected. These effects mean that
this problem is governed by a coupled non-linear system of partial differential equations; hence,
that exact solutions are not possible. It is therefore necessary to solve the problem by numerical
means using, for example, the network simulation method (NSM) as in this study.

Eringen [2] developed the theory that the local effects arising from the microstructure and the
intrinsic motion of the fluid elements should be taken into account. The theory is expected to provide
a mathematical model for the non-newtonian fluid behaviour observed in certain man-made liquids,
such as polymers, lubricants, fluids with additives, paints, animal blood, colloidal and suspension
solutions, etc. The presence of dust or smoke, particularly in a gas, may also be modelled using
micropolar fluid dynamics. Later, Eringen [3] extended the theory of thermo-micropolar fluids and
derived the constitutive laws for fluids with microstructures.

Ibraim and Hassanien [4] solved the mixed convection boundary-layer flow of a micropolar fluid
on a horizontal flat plate with power law variation in surface temperature. El-Hakiem [5] obtained
a similarity solution for the flow of a micropolar fluid along an isothermal vertical plate with an
exponentially decaying heat generation term and thermal dispersion. Chang [6] investigated the
wall plume associated with natural convection flow in micropolar fluids. Gorla et al. [7] developed
a numerical scheme to solve the steady free convection from a vertical isothermal plate in a strong
cross magnetic field immersed in a micropolar fluid. El-Hakiem et al. [8] presented an analysis
for the effect of viscous and Joule heating on MHD-free convection flow over a non-isothermal
surface in a micropolar fluid.

El-Amin [9, 10] obtained numerical solutions for the problem of steady free convection and mass
transfer flow in a micropolar fluid with constant suction, studying the combined effect of internal
heat generation and magnetic field. Ibrahim et al. [11] solved the unsteady MHD micropolar fluid
flow and heat transfer over a vertical porous plate through a porous medium in the presence of
thermal and mass diffusion with a constant heat source. Mansour et al. [12] studied the combined
heat and mass transfer in MHD of a micropolar fluid boundary-layer flow past a circular cylinder
surface with non-uniform heat and mass flux. Eldabe and Mahmoud [13] solved the problem that
involves the heat and mass transfer in a hydromagnetic flow of a micropolar fluid past a stretching
surface with Ohmic heating and viscous dissipation. Abo-Eldahad and El Aziz [14] studied the
effects of viscous dissipation and Joule heating on MHD-free convection flow past a semi-infinite
vertical flat plate in the presence of the combined effect of Hall and ion-slip currents for the case
of power law variation of the wall temperature.

The aim of the present work is to solve the unsteady natural convection along an infinite vertical
porous plate with a constant suction velocity and subject to a transverse constant external magnetic
field, taking into account the internal heat generation, Joule heating, the viscous dissipation and the
mass transfer of a viscous electrically conducting micropolar fluid, by means of a new numerical

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:861–876
DOI: 10.1002/fld



TRANSIENT FREE CONVECTION 863

technique based on electrical analogy, NSM. Firstly, a spatial discretization is applied to the
transient boundary-layer equations, and a set of ordinary differential equations are obtained, one
for each control volume. Electrical–thermal–motion analogy provides a network model that is
solved by means of a very common program used to simulate electrical circuits, PSPICE [15].
The main advantage of the method is that time derivatives are not replaced by finite differences
(similar to the method of lines [16, 17]), but only require finite-difference schemes for the spatial
variable.

NSM has been successfully applied to solving several heat transfer problems; for example, Zueco
[18, 19] studied the effect of the viscous dissipation on a vertical channel and on a semi-infinite
vertical flat plate submitted to a constant heat flux in the presence of a magnetic field, respectively.
Zueco and Campo [20] solved transient radiative transfer between the thick walls of an enclosure
by means of a new network model that can be applied to different radiation problems. Zueco and
Alhama [21] developed an iterative algorithm for estimating the dependence of temperature of the
specific heat and thermal conductivity of fluids.

MATHEMATICAL MODEL

We consider a two-dimensional unsteady natural convection with mass transfer flow of a micropolar
and incompressible fluid past an infinite vertical porous plate submitted to a transverse magnetic
field. The fluid has an internal volumetric heat generation. The x-axis is vertically upwards and the
y-axis is the coordinate perpendicular to x . Outside the plate, the quiescent ambient fluid is at a
lower constant temperature T∞, with (u,v,0) being the velocity field and (0,0,n) microrotation, u
and v denote, respectively, the velocity components in the x and y directions and n the microrotation
in the direction normal to both x and y. A uniform magnetic field is assumed to exist in the
direction normal to the surface. All fluid properties are considered to be constant, except the density
variation with temperature, which is considered only in the body force term. It is considered that
the viscous dissipation and the interaction of the induced axial magnetic field with the flow are
negligible compared with the interaction of the applied magnetic field B with the flow. Besides,
it is assumed that there is no chemical reaction between the diffusing species and the fluid. The
transient two-dimensional flow can be shown to be governed by the following boundary-layer
equations (including viscous dissipation and Joule heating):

Continuity equation:

�v/�y=0 (1)

Momentum equation:

�u/�t+v�u/�y=(�+K/�)�2u/�y2+�g(T −T∞)+�∗g(c−c∞)+K/��n/�y−u�B2
0/� (2)

Energy of angular moment:

� j�n/�t+v� j�n/�y=��2n/�y2−K (2n+�u/�y) (3)

Energy equation:

�T/�t+v�T/�y=��2T/�y2+(�+K )/�cp(�u/�y)2+Q+u2�B2
0 (4)
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Mass equation:

�c/�t+v�c/�y=D�2c/�y2 (5)

where � is the kinematic viscosity, � the density, K the vortex viscosity, g the acceleration due
to gravity, � the coefficient of volume expansion, �∗ the coefficient of volume expansion with
concentration, j the microinertia per unit mass, � the spin gradient viscosity, T the temperature in
the boundary layer, � the thermal diffusivity, � the dynamic viscosity, cp the specific heat, Q the
volumetric heat generation, � the electrical conductivity of the fluid, B0 the magnetic induction, c
and c∞ the concentrations in the boundary layer and free stream, respectively, and D the chemical
molecular diffusivity. The initial and boundary conditions are

t�0; u=0, n=0, T =T∞, c=c∞ (6a)

t>0; u=0, n=−m�u/�y, T =Tw, c=cw at y=0 (6b)

t>0; u→0, n→0, T →T∞, c→c∞ as y→∞ (6c)

where Tw and cw are the temperature and concentration on the limiting surface. m=0 represents
the case of concentration particle flows in which the microelements close to the wall are not able to
rotate, whereas for m= 1

2 and 1, the microrotation term is greater and induces flow enhancement.
The integration of Equation (1) gives

v=−v0 (7)

where v0 (>0) is the constant suction of the fluid through the porous limiting surface.
The above equations are expressed in a non-dimensional form by employing the following

boundary-layer dimensionless variables:

Y = v0y/�, U =u/v0, �= tv20/�, 	=(T −T∞)/(Tw −T∞), C=(c−c∞)/(cw −c∞)

N = �n/v20, Pr=�/�, Ec=v20/cp(Tw −T∞), Gr∗ =�g�(Tw −T∞)/v30

Gm = �g�∗(cw −c∞)/v30, M=�B2
0�/�v20, �=K/�, 
=�/� j, B=�2/jv20

(8)

where Gr∗ is the modified Grashof number, Gm is the buoyancy ratio parameter, Sc is the Schmidt
number, M is the magnetic parameter, Ec is the Eckert number and � is the couple parameter.

The volumetric heat generation is

Q=�(y)(Tw −T∞)v20/� (9)

where �(y) is a function of the y-coordinate or simply a constant. We can choose any expression
for �(y), regardless of whether a similarity solution exists. In this work, we choose �(y)= AeY

to compare the results with those of El-Amin [9], with A being a constant value denominated heat
generation parameter.

Then, the governing equations reduce to the following non-dimensional boundary-layer
equations:

�U/��−�U/�Y =(1+�)�2U/�Y 2+Gr	+GmC+��N/�Y −MU (10a)

�N/��−�N/�Y =
�2N/�Y 2−�B(�U/�Y +2N ) (10b)
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Pr�	/��−Pr�	/�Y =�2	/�Y 2+EcPr(1+�)(�U/�Y )2+Pr A+Pr EcMU2 (10c)

�C/��−�C/�Y = Sc−1�2C/�Y 2 (10d)

The dimensionless initial and boundary conditions become

��0; U =N =	=C=0 (11a)

�>0; U =0, N =−m�U/�Y, 	=1, C=1 at Y =0 ∀X (11b)

�>0; U →0, N →0, 	→0, C→0 as Y →∞ ∀X (11c)

NUMERICAL SCHEME

NSM is used to solve the problem. The discretization of the boundary-layer equations is based on
the finite-difference formulation and electrical analogy, where only a discretization of the spatial
coordinates is necessary, while time remains a real continuous variable, similar to the method of
lines. Hence, the imminent advantage of this method of no mathematical manipulations in the
discretization of the time coordinate, which are necessary for most of the numerical methods
used currently, since the code does this work. The difference with the method of lines is that
the technique used for solving the finite-difference equations discretize spatially (with time as a
continuous variable); the method of lines uses a direct mathematical software, while the NSM uses
a simulator of electric circuits, PSPICE. Method of lines benefits from the recent advances in the
resolution of equation differential ordinary by computer, while NSM makes use of the advances
in the computerized resolution of electric circuits.

To ensure an accurate transient analysis, the time step must be controlled to produce an acceptable
amount of local truncation error at each time point. The implementation of a local truncation
error time-step control with trapezoidal integration (with an order two accurate) is applied in the
transient analysis. The algorithms that are employed in PSPICE are presented in detail, and the
performance of these methods is compared with the performance of other available techniques
in the thesis of Nagel [22]. NSM simulates the behaviour of unsteady electric circuits by means
of resistors, capacitors and non-linear devices that seek to resemble thermal systems governed
by unsteady linear or non-linear equations. This method has been applied successfully to a great
variety of linear and non-linear transport problems [18–21].

The electrical analogy relates the electrical current (J ) with the velocity flux (�U/�Y ), micro-
rotation flux (�N/�Y ), temperature flux (�	/�Y ) and the concentration flux (�C/�Y ), while the
electrical potential (�) is equivalent to U,N ,	 and C for the momentum, angular moment, energy
and mass equation, respectively. For each non-dimensional boundary-layer equation, an electrical
network circuit is developed (Figure 1), where a previous spatial discretization is realized. The
whole network must be converted into an adequate program that is solved by a computer code
(electric circuits simulator), PSPICE [15]. For the transient analysis, PSPICE uses the numerical
implicit integration formulae (trapezoidal integration) with an order two accurate, besides a central
difference being used for the approximation of first and second spatial derivatives; therefore, a
second order of accuracy of the spatial discretization is obtained. Time remains as a continuous
variable, which results in greater accuracy and no time interval needs to be established by the
programmer; PSPICE imposed and adjusted continuously automatically this parameter to reach a
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Figure 1. Network model of the control volume.

convergent solution in each iteration, according to the given stability and convergence requirements
(internal to the code PSPICE). The convergence criterion used by PSPICE requires that the vector
of circuit variables Vt+1 agrees with the prior solution Vt within a specified tolerance; hence, it is
necessary that each component of the unknown vector Vt (n) satisfies the following equation:

|�t+1(n)−�t (n)|<�a+�rMin{|�t (n)|, |�t+1(n)|} (12)

where �a is an absolute tolerance and �r is a relative tolerance. Values of 10−4 for �a and of 50�V
for �r produce acceptable results in most cases. If a time-step solution does not converge, the time
step usually can be reduced until the solutions converge. This time-step reduction is necessary to
maintain a reasonable level of truncation error in the analysis. Details of the local truncation errors
can been found in the thesis of Nagel [22].

Another remarkable advantage of the NSM is that it provides both voltage and electric current;
hence, the temperatures, velocities, concentrations and heat fluxes, velocities fluxes and concen-
tration fluxes are obtained immediately, with no subsequent numerical manipulation. Besides,
generally few programming rules are necessary since the number of electrical devices that make
up the network is very small, and a wide library of electrical components is available for the future
simulation of more complex processes.

Design of the network model

In the network theory, the viability of a network model implies

(i) The existence of a network independent of time.
(ii) The existence of a magnitude J j, j−1-denominated flux associated with each branch that

connects the nodes j and ( j−1). This flux follows the Kirchhoff law for currents.
(iii) The existence of a magnitude � j, j−1-denominated potential, associated with each node, so

that the difference � j, j−1=� j −� j−1, is according to the Kirchhoff law of voltages.

It is necessary to develop four network models, one for every equation (momentum balance,
angular moment balance, energy balance and mass balance). The design of the network models
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(Figure 1) is as follows, where the values of the devices that build each network model are shown
in Table I. The finite-difference differential equations are obtained in this section. A second-order
central difference scheme has been used to discretize the boundary-layer equations, 2�Y being the
thickness of the elemental cell:

(��/�Y ) j ≈(� j+1−� j−1)/(2�Y ) (13)

(�2�/�Y 2) j ≈(� j+1+� j−1−2� j )/�Y
2=1/�Y [(� j−1−� j )/�Y −(� j −� j+1)/�Y ] (14)

Introducing expressions (13)–(14) in the non-dimensional equations (10a)–(10d), the finite-
difference differential equations are

(i) Momentum equation:

�Y/(1+�)dUj/d�−(Uj+1−Uj−1)/2(1+�)

=(Uj−1−Uj )/�Y −(Uj −Uj+1)/�Y +�Y/(1+�)(Gr	 j +GmC j )

+�(N j+1−N j−1)/2(1+�)−�Y/(1+�)MUj (15)

Defining the currents,

JU� j =�Y/(1+�)dUj/d� (16a)

JUY j =(Uj+1−Uj−1)/2(1+�) (16b)

JU j−1=(Uj−1−Uj )/�Y (16c)

JU j+�Y =(Uj −Uj+1)/�Y (16d)

J �
U j =�Y/(1+�)(Gr	 j +GmC j ) (16e)

J�
U j =�(N j+1−N j−1)/2(1+�) (16f)

J �
U j =�Y/(1+�)MUj (16g)

Equation (15) can be expressed in the form of Kirchhoff’s law:

JU� j − JUY j − JU j−1+ JU j+1− J �
U j − J�

U j + J �
U j =0 (17)

(ii) Equation of angular moment:

�Y/
dN j/d�−(N j+1−N j−1)/2
 = (N j−1−N j )/�Y −(N j −N j+1)/�Y

−�B[(Uj+1−Uj−1)+2�Y N j ]/
 (18)

Defining the currents,

JN� j =�Y/
dN j/d� (19a)

JNyj =(N j+1−N j−1)/2
 (19b)
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JN j+1=(N j −N j+1)/�Y (19c)

JN j−1=(N j−1−N j )/�Y (19d)

J �
N� j =�B[(Uj+1−Uj−1)/2+2�Y N j ]/
 (19e)

Equation (18) can be expressed in the form of Kirchhoff’s law:

JN� j − JNY j − JN j−1+ JN j+1+ J �
N j =0 (20)

(iii) Energy equation:

�Y Prd	 j/d�−Pr(	 j+1−	 j−1)/2

=(	 j−1−	 j )/�Y −(	 j −	 j+1)/�Y

+EcPr(1+�)(Uj+1−Uj−1)
2/4�Y +�Y Pr A+�YPrEcMU 2

j (21)

Defining the currents,

J	� j =�Y Prd	 j/d� (22a)

J	Y j =Pr(	 j+1−	 j−1)/2 (22b)

J	 j−1=(	 j−�Y −	 j )/�Y (22c)

J	 j+1=(	 j −	 j+1)/�Y (22d)

J �
	 j =EcPr(1+�)(Uj+1−Uj−1)

2/4�Y (22e)

J�
	 j =�Y Pr A (22f)

J �
	 j =�Y PrEcMU 2

j (22g)

Equation (21) can be expressed in the form of Kirchhoff’s law:

J	� j − J	Y j − J	 j−�Y + J	 j+�Y − J �
	 j − J�

	 j − J �
	 j =0 (23)

(iv) Mass equation:

�Y ScdC j/d�−Sc(C j+1−C j−1)/2=(C j−1−C j )/�Y −(C j −C j+1)/�Y (24)

Defining the currents,

JC j+1=(C j −C j+1)/�Y (25a)

JC j−�Y =(C j−1−C j )/�Y (25b)

JCyj = Sc(C j+1−C j−1)/2 (25c)

JC� j =�Y ScdC j/d� (25d)
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Equation (24) can be expressed in the form of Kirchhoff’s law:

JC� j − JCY j − JC j−1+ JC j+1=0 (26)

J�� j is the transitory term, implemented by means of a capacitor C� j connected to the centre
of each cell. J�Y j is the current due the inertia term of V , implemented by means of voltage
control current generators G�Y j . J� j+1 and J� j−1 are the currents that leave and enter the cell
for the friction term and they are implemented by means of two resistances R� j+1 and R� j−1 of

value �Y , respectively. Other voltage control current generators (G�
� j ,G

�
� j ,G

�
� j ) are employed to

implement the buoyancy effect, the viscous dissipation, the internal generation heat, the magnetic
field and the angular rotation. � j , � j+1 and � j−1 are the voltages of the nodes ‘ j’ (half of the
cell), ‘ j+1’ and ‘ j−1’ (extremes of the cell), respectively.

Finally, for the initial condition, the voltages U =N =	=C=0 for ��0 are applied to the four
capacitors CU j ,CN j ,C	 j and CCj . To implement the boundary conditions at Y =0, constant voltage
sources are employed for the velocity, temperature and concentration, while for the implementation
of N =−m�U/�Y , a current control voltage generator is used. The boundary conditions at Y →∞
are implemented by means of ground elements. A total of Ncells (a mesh system with 150 nodes
is proven to suggest mesh-independent results) are connected in series to form the network model
complete together with the boundary conditions in the extremes.

RESULTS AND DISCUSSION

The results of the numerical computations are shown in Figures 2–8 for distribution of velocity,
angular velocity and temperature. Following the above-cited works, we consider the following
physically realistic values of the parameters: constant values, 
=0.5, Gm=2.0, B=0.1 and other
values (ranges) Pr=0.7–10.0, Gr∗ =2.0–5.0, Sc=0.01–0.7, Ec=0.01–0.2, M=1.0–8.0, �=
0–5.0, A=0–0.5, m=0,1.0. The numerical values employed in each case are included in each
figure. Figures 2 and 3 show the distribution of the velocity within the boundary layer. Figure 2
shows the transient (�=0.5,1.0,2.0 and 3.0) and steady-state (the condenser of the network merely
has to be omitted) response for two cases, Pr=1.0, �= A=0 and Pr=5.0, �=5.0, A=0.5. We
observe from this figure that the velocity increases with time to reach the steady state (maximum
values). This figure also shows the results obtained by El-Amin [9] with heat generation (A=0) for
comparison. The excellent degree of agreement of the present results with those of this author using
the fourth-order Runge–Kutta together with a shooting technique can be appreciated. The effects
of the magnetic parameter, heat generation parameter and Joule heating are shown in Figure 3,
in which it can be seen that a decrease in the magnetic parameter M or an increase in the heat
generation parameter A leads to an increase in the velocity, while the location of the maximum
velocity moves farther away from the plate. In this same figure, it can be seen that the Joule heating
effect leads to a very gradual increase with velocity field.

Figures 4–6 show the distribution of the angular velocity within the boundary layer. Figure 4
shows the transient (�=0.5,1.0,2.0,3.0,4.0 and 5.0) and steady-state response for �=1.0 and 5.0.
As can be seen from this figure, as � increases, the amplitude of the angular velocity increases,
that is to say, the absolute values increase, and positive values are reached far from the wall and
negative values near the wall. These values increase with time to reach the steady state (maximum
and minimum values, respectively). The effects of magnetic parameter, heat generation parameter
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Figure 2. Transient and steady-state dimensionless velocity profiles with Pr=1.0, Gr∗ =2.0, Gm=2.0,
Sc=0.01, M=1.0, 
=0.5, B=0.1, m=1.0 and Ec=0, for Pr=1.0 and 5.0, �=0.0 and 5.0, A=0.0

and 0.5. Comparison of the results with Reference [8].
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Figure 3. Effects of Joule heating, A and M on the dimensionless velocity profiles with Pr=0.7, Gr∗ =5.0,
Gm=2.0, Sc=0.01, 
=0.5, B=0.1, �=5.0, m=0 and Ec=0.01.

and Joule heating are shown in Figure 5, in which it can be seen that a decrease in the magnetic
parameter M or an increase in the heat generation parameter A leads to an increase in the amplitude
of the angular velocity. In the same figure, it can be seen that the Joule heating effect leads to a very
gradual increase in the angular velocity field. In Figure 6 the temporal response (�=0.5,1.0,2.0
and steady state) of the angular velocity is plotted. The effects of the Schmidt number and viscous
dissipation are analysed. As can be seen, the angular velocity increases as Sc decreases or Ec
increases. We observe from this figure that the angular velocity increases with time to reach the
steady state.

The transient temperature profiles (�=0.5,1.0,2.0 and steady state) are shown in Figure 7. As
Gr∗ increases, the temperature profile within the boundary layer tends to increase; in addition,
the temperature increases with time to reach the steady state. The stationary response is shown
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Ec=0.01. Effects of Joule heating.
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Figure 8. Dimensionless steady-state temperature profiles for various values of Pr, �,M, A,m and Ec
with Gr∗ =5.0, Gm=2.0, Sc=0.01, 
=0.5, B=0.1.

in Figure 8 as a function of different parameters. It can seen, that as �, A, Ec and m increase or
as M and Pr decrease, the temperature profile increases. In the same figure, it can be seen that
the Joule heating effect leads to an increase in the temperature field; besides, the boundary layer
thickness decreases as Pr increases. The concentration distribution, which is affected only by Sc,
decreases as this parameter increases (case no plotted).

Tables II–IV show the spatial derivates in the wall (Y =0), U ′(0)=dU/dY |Y=0,N ′(0)=
dN/dY |Y=0, 	′(0)=d	/dY |Y=0 and C ′(0)=dC/dY |Y=0 necessary to determine the local friction
factor, the couple stress at the wall, the Nusselt number and the Sherwood number, respectively.
Table II shows the results obtained by El-Amin [9] with heat generation (A=0) to confirm the
accuracy of the results. The values of U ′(0),N ′(0) and 	′(0) are very close for high values of M ,
while the same values are obtained for C ′(0).
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Table II. Values of U ′(0),N ′(0), 	′(0) and C ′(0) for various values of M, Ec and Sc with �=1.5, Gr =5,
Gm=2, Pr=0.7, 
=0.5, m=0.5, B=0.1, A=0 and no effect Joule considered.

U ′(0)=dU/dY |Y=0 N ′(0)=dN/dY |Y=0 −	′(0)=−d	/dY |Y=0 −C ′(0)=−dC/dY |Y=0

M Ec Sc [8] NSM [8] NSM [8] NSM [8] and NSM

1.3 0.0 0.0 3.11498 3.07800 3.35721 3.31740 0.74532 0.74532 0.25000
0.05 3.08916 3.05270 3.33095 3.29172 0.74532 0.74472 0.27583

0.01 0.0 3.12611 3.10480 3.36888 3.34540 0.72762 0.70183 0.25000
0.05 3.10000 3.07890 3.34229 3.31900 0.72800 0.70278 0.27583

2.5 0.0 0.0 2.49175 2.49000 2.70253 2.6997 0.74532 0.74532 0.25000
0.05 2.47465 2.47290 2.68519 2.68240 0.74532 0.74532 0.27583

0.01 0.0 2.49590 2.50040 2.70690 2.71070 0.73532 0.72019 0.25000
0.05 2.47871 2.48310 2.68946 2.69320 0.73550 0.72065 0.27583

3.3 0.0 0.0 2.25822 2.24420 2.45594 2.44030 0.74532 0.74532 0.25000
0.05 2.24407 2.30020 2.44161 2.42610 0.74532 0.74532 0.27583

0.01 0.0 2.26090 2.25080 2.45876 2.44720 0.73756 0.72614 0.25000
0.05 2.24669 2.23670 2.44438 2.43290 0.73769 0.72646 0.27583

4.5 0.0 0.0 1.98164 1.98100 2.16272 2.16120 0.74532 0.74532 0.25000
0.05 1.97069 1.97000 2.15168 2.15020 0.74532 0.74532 0.27583

0.01 0.0 1.98313 1.98470 2.16430 2.16520 0.73980 0.73147 0.25000
0.05 1.97216 1.97370 2.15323 2.15410 0.73988 0.73168 0.27583

Comparison of the results with Reference [8].

Table III. Values of U ′(0),N ′(0),	′(0) and C ′(0) for various values of
M,� and A with Ec=0.02, Sc=0, Gr =5, Gm=2, Pr=0.7,
=0.5,

m=0.5, B=0.1. Effects of Joule heating.

M � A Effect Joule U ′(0) N ′(0) −	′(0) −C ′(0)
1.3 0.5 0.0 Yes 4.33230 4.49440 0.58539 0.25000

0.0 No 4.18690 4.34480 0.65953 0.25000
0.2 Yes 4.54260 4.71120 0.43790 0.25000
0.2 No 4.37290 4.53650 0.52419 0.25000

1.5 0.0 Yes 3.21440 3.45970 0.60489 0.25000
0.0 No 3.13300 3.37490 0.65643 0.25000
0.2 Yes 3.37260 3.62540 0.46078 0.25000
0.2 No 3.27800 3.52690 0.52061 0.25000

4.5 0.5 0.0 Yes 2.58340 2.68840 0.67675 0.25000
0.0 No 2.54480 2.64860 0.72170 0.25000
0.2 Yes 2.67200 2.77980 0.54315 0.25000
0.2 No 2.62790 2.73430 0.59433 0.25000

1.5 0.0 Yes 2.01730 2.19950 0.67989 0.25000
0.0 No 1.98850 2.16920 0.71750 0.25000
0.2 Yes 2.09300 2.27930 0.54673 0.25000
0.2 No 2.06000 2.24470 0.58957 0.25000
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Table IV. Values ofU ′(0),N ′(0),	′(0) and C ′(0) for various values of M , Pr
and Ec with A=0.2,�=1.5, Sc=0.01,Gr =5,Gm=2,Pr=0.7,
=0.5,

m=0.5, B=0.1. Effects of Joule heating.

M Pr Ec Effect Joule U ′(0) N ′(0) −	′(0) −C ′(0)
1.3 0.7 0.00 Yes 3.25120 3.49880 0.59664 0.25503

0.00 No 3.21150 3.45740 0.62011 0.25503
0.01 Yes 3.27480 3.52210 0.54880 0.25503
0.01 No 3.24070 3.48810 0.57173 0.25503
0.04 Yes 3.54430 3.80870 0.26780 0.25503
0.04 No 3.33100 3.58160 0.41663 0.25503

5.0 0.00 Yes 1.90620 2.06150 3.96940 0.25503
0.00 No 1.88260 2.06320 4.02300 0.25503
0.01 Yes 1.92780 2.08460 3.86250 0.25503
0.01 No 1.90400 2.05890 3.91860 0.25503
0.04 Yes 2.08540 2.25650 3.25600 0.25503
0.04 No 1.96430 2.12440 3.57230 0.25503

4.5 0.7 0.01 Yes 1.27950 1.40150 3.94570 0.25503
0.01 No 1.26830 1.38940 3.99110 0.25503
0.04 Yes 1.32630 1.45270 3.68070 0.25503
0.04 No 1.27730 1.39920 3.88640 0.25503

5.0 0.01 Yes 1.27950 1.40150 3.94570 0.25503
0.01 No 1.26830 1.38940 3.99110 0.25503
0.04 Yes 1.32620 1.45270 3.68070 0.25503
0.04 No 1.27730 1.39920 3.88640 0.25503

An increase in the Eckert number Ec and of the heat generation parameter A leads to an increase
in the wall shear stress and the wall couple stress, while an increase in the magnetic parameter,
couple parameter �, Prandtl number Pr and Schmidt number Sc leads to a decrease in the wall
shear stress and the wall couple stress. The effect of increasing the values of Ec leads to a decrease
in the local Nusselt number, whereas when the viscous dissipation is neglected (Ec=0), the heat
transfer rate depends only on the Prandtl number and on whether or not the Joule heating effect
is considered. Finally, the concentration gradient at the wall depends only on the Schmidt number
Sc and increases when Sc increases.

CONCLUDING REMARKS

This paper has presented an unsteady boundary-layer analysis for the flow of a micropolar fluid
over a vertical infinite porous plate with exponentially decaying heat generation. The effects of
the Prandtl number, magnetic parameter, buoyancy, micropolar parameter, viscous dissipation and
Joule heating are analysed. The governing equations are only spatially discretizated and an electrical
network model is developed to obtain a numerical solution by means of the PSPICE program.
To verify the numerical solution procedure and the computer program, some of the results are
compared with those reported in previous works and other new results are added.
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